
Detecting Political Bias in Speeches and News Articles
Final Report

Sachi Angle
sva22

Cornell Tech
New York, NY, 10044
sva22@cornell.edu

Varun Ganesh
vg274

Cornell Tech
New York, NY, 10044
vg274@cornell.edu

Pargol Gheissari
pg463

Cornell Tech
New York, NY, 10044
pg463@cornell.edu

Rina Schiller
rs2536

Cornell Tech
New York, NY, 10044
rs2536@cornell.edu

Nicolas Sempere
nls92

Cornell Tech
New York, NY, 10044
nls92@cornell.edu

Abstract

The political ecosystem in the United States is dynamic and complex. There are
two major political parties in the United States and much of the political discourse
in the country can be classified as either leaning conservative or liberal. This
paper details the approach we have taken towards identifying political bias that
can be inferred from text. We refer to existing research done in the area and aim
to replicate two previous approaches for this classification problem: a Recursive
Neural Network and Long short-term memory architecture. We then assess the
transferability of the models to similar datasets. We detail the datasets used for this
purpose and the metrics for evaluating the results achieved.

1 Introduction

The rise of social media over the last decade has led to a dramatic increase in sharing information
online. Users actively engage in political discussions on social media, where conversations are
typically fueled by a plethora of public debates, interviews and speeches. This information is captured
in both structured and unstructured form at an unprecedented scale.

In the US, there are two predominant ideologies in the political atmosphere: liberal and conservative
[7]. The two ideologies have opinions on different issues and are obviously biased towards them.
However, identifying ideological bias in political texts, such as news, social media and journals, is
difficult. In the age of big data, it becomes impractical, expensive and very challenging to manually
decipher this public information. Furthermore, this bias can be localized within a small section of the
document which can make it difficult to detect. Thus, for a human to be able to detect this, knowledge
of the field along with annotator’s ability to pick up on subtle elements of language use is required.

Most existing work on bias and ideology detection have focused on "bag-of-words", which ignores
the linguistic context. However, recently with the success of deep neural networks in the field of
natural language processing, there has been a growth in applying state-of-the-art models for opinion
detection and sentiment analysis. For instance, recursive neural networks have been applied to
parsing, sentence level sentiment analysis and paraphrase detection [8].

In this paper, we will explore classifying articles into conservative or liberal classes using recursive
neural networks and long short term memory networks.



2 Related Work

In previous work, Horne et. al used political ideology as a feature in fake news detection. Furthermore,
they classified whether an article is biased or unbiased. They developed a credibility search toolkit
consisting of several modules, each serving a different function. The first module predicts the
reliability of the user-selected news article. The second module is responsible for bias and subjectivity
prediction. It consists of two independent classifiers: a random forest classifier and a Naive Bayes
classifier. The random forest classifier is used for predicting hyper-partisan articles. The Naive Bayes
classifier is more generic and focuses on sentence-level objectivity. The third module is built to
predict which online groups are interested in a certain article and the final module analyzes the news
at a source-level granularity [5].

Similar to Horne et al., Potthast et al. classified the bias in a target article as left, right or mainstream,
and as hyper-partisan or mainstream. They reported a comparative style analysis of extremely one-
sided news and fake news. They mainly explored classification models such as topic-based bag of
words and Naive Bayes [9]. This type of bias classification at article level was also explored by
Kulkarni et al. They modeled both the textual and the URL contents of the target article and used a
Bayesian approach with stochastic attention units to effectively model textual cues. In order to model
ambiguity and avoid overfitting, they constructed a model with three main components. First, the
discriminator, denoting a probability distribution, given a hidden representation was modeled using a
feed-forward network with a linear layer, followed by a ReLU for non-linearity followed by a linear
layer and a final softmax layer. Next, they parameterized the latent distribution using a “multi-view”
network which incorporates hidden representations learned from multiple modalities into a joint
representation. Finally, they modeled the content of an article, using a hierarchical approach with
attention. In particular, they computed attention at both words and sentences levels [2].

Moreover, researchers have targeted bias at different levels. For instance, Iyyer et al. have focused
at phrase and sentence level, using a recursive neural network (RNN) framework to the task of
identifying the political position evinced by a sentence [7]. Sim et al. measured political candidates’
ideological positioning from their speeches by applying a domain-informed Bayesian HMM to infer
the proportions of ideologies each candidate uses in each campaign [10]. Gerrish et al. focused
on linking legislative sentiment to legislative text. They explored several models, such as logistic
regression with random effects, text regression and supervised Latent Dirichlet Allocation, that
connect the voting patterns of legislators to the original bill texts [4].

Figure 1: Pre-training and fine-tuning processes in BERT have similar architectures [3]

The natural language modeling tasks mentioned above can be improved by language model pre-
trainning. Natural language inference and paraphrasing, which aim to predict the relationships
between sentences by conducting a holistic analysis, as well as token-level tasks such as question
answering, where models are required to produce fine-grained output at the token level, are examples
of these tasks. The Bidirectional Encoder Representations from Transformers (BERT), a new language
representation model developed by researchers at Google AI Language, has been able to achieve
a deeper sense of language context and flow. This conceptually simple yet empirically powerful

2



model, is designed to pre-train deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. Thus, this model can be fine-tuned by just
adding one additional output layer; which can consequently create state-of-the art models for a wide
range of tasks, such as question answering and language inference, without substantial task specific
architecture modifications. In this model, excluding the output layer, the architectures are the same in
both pre-training and fine-tuning[3]. The procedures of fine-tuning and pre-training can be seen in
figure 1 above.

Our work focuses primarily on detecting bias in both political speeches and news articles using a
recursive neural network. In the following sections, we will discuss our methods and provide details
on the datasets used.

3 Dataset

As mentioned, the rise of social media over the past few years has lead to a dramatic increase in
the data sets containing public debates and discussions in this space. Consequently, many models
focusing on detecting bias and ideology take advantage of such data sets. In this project, we used two
different data sets: the Convote data set and the data set generated by Budak et al.

As our model is inspired by the work of Iyyer et al, we chose to use the same data set for benchmark
comparison. This data set is the Convote data set[11]. Convote is a set of speech segments from
congressional debates circa 2005. It was sourced from raw transcripts from the House of Representa-
tives, encoded as a series of HTML documents at govtrack.us. These transcripts, which represent
contiguous debates regarding a bill and feature multiple speakers, are broken apart into segments at
the speaker level. Each segment is stored within text document that is labelled according to the bill
being debated, the speaker, that speaker’s political party, and information relevant to the segment’s
location in the original transcript.

Figure 2: Spread of articles used in the dataset of Burak et al. across categories

The second data set that we used is the news article data set developed by Budak et al [1]. Their
dataset consists of news articles from 15 popular news outlets and political blogs published online in
2013. From an original set of over 800,000 articles, they distilled 115,000 articles deemed as being
political in nature. Their labels were created through crowdsourcing efforts, such as using workers
from Amazon Mechanical Turk. Each article was given two labels, corresponding to the degree to
which the workers thought the article was positive, neutral, or negative toward the Republican and
Democratic parties, respectively. The distribution of articles across different topics and different

3



Figure 3: Sources of articles used in the dataset of Burak et al.

news sources can be seen in figures 2 and 3. As seen, there is an even spread of news articles across
different sources; however, the distribution of articles across topics shows that most articles are either
not grouped in a specific category or belong to the topics of economy and international news.

4 Methods

4.1 Pre-Processing

In order to apply our model to these datasets, we first needed to preprocess the data such that each
document, which contains segments of a speech, is represented as a numerical feature vector. This
process consists of retrieving the articles and their labels, removing stop words, and performing
lemmatization and tokenization.

In order to preprocess the Convote dataset, we first downloaded the set of speech segments. The
dataset does not have associated labels; rather, each speech file has a specific file-naming convention
that includes the party associated with the speech along with other data. We wrote a script to save
only the text of the speech with the political party as the label.

On the other hand, the dataset collected by Burak et al. contained URLs, labels for topics and labels
for votes. The votes correspond to the ideological leaning of the article for each party and consisted
of any of these values: Positive, Somewhat Positive, Neutral, Somewhat Negative, Negative. These
were encoded on a scale ranging from positive to negative as –1, –0.5, 0, 0.5, 1 for the Democratic
party. Analogously, for the Republican Party, the same scale is encoded as 1, 0.5, 0, –.0.5, –1. The
final score is calculated as the average over the two values. For example, an average score of –1
indicates that the article is very positive toward Democrats. The final label is obtained by applying a
threshold at 0.

Moreover, as the second data set contained only the URLs and not the actual news articles, we built a
scraper that visits the webpages and retrieves the text content. A Python library called BeautifulSoup
was leveraged for this purpose. The text content was targeted using HTML tags. While the generic
paragraph tags worked to retrieve content for most websites, some needed custom inspection to
identify the classes of tags that contained the relevant content. This was done through a manual
process.

After retrieving the contents and the labels, we used the BERT pre-trained model to produce the
feature vectors. This process consisted of four main steps: removing stop words, lemmatization,
tokenization and converting to feature vectors. The stop words were defined using the nltk.corpus

4



package. The BERT transformer was originally trained on sentence entities, and its maximum
sequence size is 512. These constraints are not directly compatible with entire documents, which
contain numerous sentences. To structure our data in a way that allowed us to use BERT effectively,
we broke down each speech into an array of sentences and then the stop words were removed. Next,
we tokenized the dataset using the pre-trained BERT tokenizer. As BERT was trained using the
WordPiectokenization with a 30,000 token vocabulary, the words were broken down into more than
one sub-word. The first token of every sequence starts with the [CLS] special token and sentences
are first seperated using the [SEP] special token. Under the condition that a word is not present in
the vocabulary the [UNK] special token is used. In order to ensure that all our input are of the same
size, we padded to the size of 512. After the data is tokenized we create a word-by-word matrix of
feature vectors with size of Sentence Length× 768, where Sentence Length is fixed across all
the documents in the dataset. After completing this final step, the documents are ready to be passed
through our model.

4.2 Model

We designed our models based on the methods implemented by Iyyer et al. and Misra et al. We
explored an RNN model similar to that of Iyyer et al. and a LSTM model similar to Misra et al.

Since RNN models are able make predictions based on what was learnt from the prior input, they can
model semantic composition. This is the principle that a phrase’s meaning is a combination of the
meaning of the words within that phrase. Most languages follow this principle, except for sarcasm
and idioms [7]. In the RNN model, each computed state is used to update a hidden state, which
influences the next output. Furthermore, in this model, each word in a sentence is associated to a
vector representation. These words form phrases; similar to the words, each of these phrases are also
associated to a vector of the same size as the vector representation of the words [7]. As seen in figure
4, the phrases can then be recursively used to generate vectors at higher-level nodes and merge into
the sentence. The vector representation of these sentences is trained such that the meaning of the
entire sentence is retained. As Iyyer et al had data labelled at the phrase level, an RNN was able to
effectively learn the political bias in each sentence. Their RNN model predicted an output for each
sentence by learning from the words contained in it. In comparison, our approach predicted the bias
present in each document by learning from the sentences within. The final output layer will employ a
softmax classifier:

ŷarticle = softmax(Wcat · xarticle + bbias) (1)

where Wcat is a matrix of weights such that Wcat ∈ Rk×d where k denotes the number of ideological
label types.

Figure 4: Example RNN for the phrase “socalled climate change” [7]

As phrase level annotations of data are not always available, we also implemented a Long Short
Term Memory (LSTM). As shown by Misra et al, Long Short Term Memory (LSTM) Networks are
effective in capturing more information with lesser data. These models are able to capture long range
correlation between sentences to output a final label for the document. In our model, a LSTM unit is
described by a sigmoid activation function and a binary cross entropy loss is calculated at the final
time step of the network.

5



In the following section, we show the results from the RNN and LSTM models and compare their
performances on the Convote datatset. To resolve the issue of maximum sequence size in the word
embedding step, we explored truncating sentences vs picking certain sentences and its effect on the
model. We also explored the effect of depth on the model.

5 Results and Discussion

In this section we describe the results of our experiments classifying ideological leanings as liberal
or conservative using the RNN and LSTM models on the Convote dataset and the dataset collected
by Burak et al. The Convote dataset was used to compare our performance against literature and
the Budak et al. news dataset was used to test the generalizability of our model. Furthermore, we
compare our results against the results achieved by Iyyer et al. and Misra et al. Iyyer et al achieved
an accuracy score of 0.702 using an RNN approach on the Convote data. Misra et al achieved an F1
Score of 0.718 using an LSTM approach using the Ideological Book Corpus (IBC) dataset [8].

In order to compare our model against literature, we first experimented with our RNN model on the
Convote dataset. We assessed several different variations. First, we compared the accuracy of our
model by modifying the method of generating word embeddings. We tested both BERT and fastText;
with both variations, with a learning rate of 0.001 and over 25 epochs, we achieved an accuracy of
51% and a loss of 4.15. Although the accuracy of our model did not change with either of these
methods, the time for training was much faster using fastText. We believe this is due to the fact that
the size of the embeddings are different; BERT has a size of 768 while fastText is 300. Next, while
keeping the learning rate and number of epochs same as before (0.001 and 25 respectively), we
assessed the effect of number of hidden layers on the accuracy of our model: we experimented with
1, 2, 4, 8, 16 and 32 layers. The accuracy and loss were fairly consistent with every condition. We
achieved an accuracy of 54% using 2 hidden layers and an accuracy of 45% using 32. Thus, we
chose to have 2 hidden layers. Next, we modified the learning rate from 0.001 to 0.005 and assessed
the performance over 25 epochs. The accuracy and loss did not change significantly under both
conditions, the loss vs number of epochs can be seen in figure 5 below. The learning rate of 0.001
performed slightly better: it resulted in 54% accuracy while the learning rate of 0.005 resulted in 51%
accuracy. We also modified the batch size but did not see a significant improvement and the accuracy
remained the same. However, the loss varied for different batch sizes, the loss increased with
decreasing the batch size. We experimented with batch sizes of 32, 256 and 512. The loss was about
7.5 with batch size of 32 and 5.2 with batch size of 256. We then experimented with the number
of epochs being set to 25, 50 and 100. However, the loss remained fairly constant at 4.15 after the
25th epoch. As a final experiment, we wondered if essential information was being discarded by
truncating the documents that were longer than Sentence Length to that length. We experimented
with an approach where we used a pretrianed nltk Vader model [6] to identify the sentiment score of
each sentence in a document. We did this as we concluded that the sentences in speeches and articles
that were more sentimental than the neutral sentences would contain information relevent to the
political bias of the document. This model assigns a positive sentiment score, negative sentiment
score and a neutral sentiment score to a sentence. The Sentence Length number of sentences in the
document that had the largest sums of positive and negative sentiment scores were used as the data
input into our political bias classifier. However, even this model achieved an accuracy of 54% and a
loss of 4.15.

Therefore, this model achieved best performance over 25 epochs when using fastText method for
word embeddings, a learning rate of 0.001, a batch size of 256 and 2 hidden layers.

Next, in order to compare our RNN model against LSTM, we ran LSTM on the Convote dataset and
assessed several variations: vanilla LSTM, three-layer LSTM and three-layer bidirectional LSTM.
The performance remained fairly similar for all variations of LSTM. The loss and accuracy remianed
fairly constant at about 51% and 16 respectively. As it can be seen, the performance of RNN and
LSTM were similar on this dataset.

As mentioned, we also evaluated the generalizabilty of the LSTM model by running it on the articles
dataset collected by Burak et al. Under similar conditions as before, learning rate of 0.001 and 25
epochs, the lowest loss achieved was 1.9. We experimented with different variations of the parameters,

6



Figure 5: Loss of RNN model over 25 epochs with learning rate of 0.001 and 2 hidden layers

with 1-2 layers, hidden dimensions ranging from 25-100, learning rate ranging from 0.0001 to 0.1
and batch size varying from 128 to 512. All approaches achieved similar results which did not
yield an accuracy that was better than random chance. These results indicate that the model is not
generalizable to other datasets.

6 Conclusion

In this project, we applied two different models to detect political ideology: RNN and LSTM. The
previous work in this domain heavily rely on bag-of-words and are not able to capture the deep
understanding of the structure of language. We have shown that our approach detects bias similar to
the models implemented by Iyyer et al. and Misra et al; however, as the same level of accuracy was
not achieved, it can be concluded that the models developed by them are not perfectly replicable.

Moreoever, we explored two different datasets with different contents. The Convote dataset included
speech segments from the congressional debates in 2005 and the dataset developed by Burak et al.
consisted of news articles from popular news outlets in 2013. Our results have shown that the RNN
and LSTM models perform similarly on the Convote dataset. Furthermore, the evaluation of the
LSTM model on the news dataset collected by Burak et al. shows that the LSTM developed by Misra
et al. is not generalizable to other datasets.

7 Future Work

There are a few directions in which our work can be expanded. First, as indicated by the results,
we can experiment with more sophisticated RNN models to improve the accuracy of classifying
bias. Furthermore, we can compare and explore the performance of models at sentence-level versus
document-level.

Second, we can consider political ideologies beyond liberal and conservative. For instance, we can
investigate a finer-grained dataset that include neutral annotations which could result in showing
more subtle distinctions between the two ideologies.

As the models we tried did not sufficiently learn the distinction between liberal and conservative
text, we can investigate topic modelling as a part of the feature engineering to assist the model in
achieving higher classification accuracy. We can also investigate methods to better represent sentences
as vectors, as it is possible that by using sentences to make predictions, we lose out on essential
word-level information.

Moreover, we can also explore the use of pre-built sentiment analysis models to identify and remove
sentences from each document that are generic or neutral towards both parties. This can help remove
noise from our dataset. After removing the neutral sentences, we can proceed to representing each
sentence as an average of the word embeddings of each word in the sentence. Removing this noise
can help improve the performance of both models.

7



8 Appendix

The work for this project was split as following:

• Deep Blue Data Scraping - done by Varun, Sachi
• Literature Survey - done by Pargol
• Preprocessing and incorporating BERT into our model - done by Rina, Nick
• Model Experimentation - All

References
[1] Goel-S. Budak, C. and J. Rao. Quantifying news media bias through crowdsourcing and

machine learning dataset [data set]. university of michigan - deep blue. Melbourne, Australia,
2019. University of Michigan - Deep Blue.

[2] Sohan De Sarkar, Fan Yang, and Arjun Mukherjee. Attending sentences to detect satirical
fake news. In Proceedings of the 27th International Conference on Computational Linguistics,
pages 3371–3380, Santa Fe, New Mexico, USA, August 2018. Association for Computational
Linguistics.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018.

[4] Sean M. Gerrish and David M. Blei. Predicting legislative roll calls from text. In Proceedings of
the 28th International Conference on International Conference on Machine Learning, ICML’11,
page 489–496, Madison, WI, USA, 2011. Omnipress.

[5] Benjamin D. Horne, William Dron, Sara Khedr, and Sibel Adali. Sampling the news producers:
A large news and feature data set for the study of the complex media landscape, 2018.

[6] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Eighth international AAAI conference on weblogs and social
media, 2014.

[7] Mohit Iyyer, Peter Enns, Jordan L. Boyd-Graber, and Philip Resnik. Political ideology detection
using recursive neural networks. In ACL, 2014.

[8] Arkajyoti Misra and Sanjib Basak. Political Bias Analysis. pages 1–8.

[9] Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. A
stylometric inquiry into hyperpartisan and fake news. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
231–240, Melbourne, Australia, July 2018. Association for Computational Linguistics.

[10] Yanchuan Sim, B.D.L. Acree, Justin Gross, and N.A. Smith. Measuring ideological proportions
in political speeches. EMNLP 2013 - 2013 Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference, pages 91–101, 01 2013.

[11] Matt Thomas, Bo Pang, and Lillian Lee. Get out the vote: Determining support or opposition
from Congressional floor-debate transcripts. In Proceedings of EMNLP, pages 327–335,
Department of Computer Science, Cornell University Ithaca, NY 14853-7501, 2006.

8


	Introduction
	Related Work
	Dataset
	Methods
	Pre-Processing
	Model

	Results and Discussion
	Conclusion
	Future Work
	Appendix

